If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-4x-32=0
a = 5; b = -4; c = -32;
Δ = b2-4ac
Δ = -42-4·5·(-32)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*5}=\frac{4-4\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*5}=\frac{4+4\sqrt{41}}{10} $
| 4.4x=86 | | 5(X-2)=14-3x | | 2x×2x=-128 | | 6x+112=6x-18 | | 5x-5=3x+27 | | 3x×3x-16=32 | | 4.4x=117 | | 9x^2+6x=8x^2+8 | | 6x+12=-8x-18 | | 5x=3x+27 | | x+39+2x-9=180 | | 3b+7=-1 | | 13=4(5x-1)-11x | | (x-1)^2=-1 | | 3x+20+2=180 | | -6(9x+5)-3x+4x=-480+x | | 2n+23=-19-4 | | x^2-1x=2x+4 | | 5x-7+4x+1=90 | | 5x+19=9x-17 | | -4(5-y)=0 | | 25=2x+8 | | 8x-12=6x+24 | | Y=8.4—.8x | | -7=9–q | | x(2x-1)(x+5)-(2x^2+1)(x+4,5)=3,5 | | 8+Г2x+17=x+9 | | (3p)(5p-1)=0 | | 6x+2-1=x+3 | | 2(n–7)=6 | | 23(12−9)+10=x+(−6)+10 | | 6/r=3 |